QUALITY STANDARDS FOR ALKYL-ORGANOPHOSPHATE ESTER FLAME RETARDANTS TO PROTECT AQUATIC ECOSYSTEMS

Deviller Geneviève a, Castro-Jiménez Javier b, Ourgaud Mélanie c, Richard Sempère d
a Aix Marseille University, CNRS/INSU, University of Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110 13288 Marseille France.
b DERAC, Environmental Risk Assessment of Chemicals. 17 Bd des Chênes 13009 Marseille France.
c ECHA)

INTRODUCTION AND OBJECTIVES

Alkyl-organophosphate esters (OPEs) are a group of organophosphorus flame retardants (PFRs) in expanding use world-wide. The major drivers of growth for this market are stringent government regulations related to prohibition of polybrominated diphenyl ethers (PBDEs), growing awareness on fire safety and increasing market penetration of PFRs in various end-use industries including the manufacture of plastic products. Latest scientific works highlighted that some OPEs could exhibit similar properties as Persistent Organic Pollutants [1]. However, while their environmental occurrence is more and more studied, little is known about the risk they could represent for living organisms. To address the issue, the CARE MED project (concentration, accumulation and potential risks of anthropogenic contaminants in coastal environments in the NW Mediterranean Sea) ambitions to investigate widely used OPEs (manufactured > 1000 Tiy) coastal concentrations, their transfer in Mediterranean food webs and to derive quality standards in order to assess their potential risks to marine organisms and human health.

The specific objectives of this work are: (a) to estimate safe concentrations for pelagic and benthic species, top predators and humans consuming fishery products, or quality standards (QS), in marine water, sediment and biota of 3 widely used alkyl-OPEs (Fig.1): Tri-n-butyl phosphate (TnBP), 2-Ethylhexyl diphenyl phosphate (EHDP) and Tri-iso-butyl phosphate (TIBP) according to the last version of the EC Technical Guidance to derive Environmental Quality Standards (TG EOS) [2] using up-to-date regulatory and research data (b) to assess their level of uncertainties in order to facilitate their use by risk managers and to highlight data gaps for consideration by policy makers and researchers.

APPROACH

QS derivation: As represented schematically in Fig.2, relevant data on physicochemical properties, fate and behavior and toxicity were collected online from scientific published literature (mostly peer-reviewed) and disseminated data by regulatory bodies (mostly REACH registration data by ECHA). The reliability of data non previously validated by competent authorities has been assessed according to the Klimisch methodology [3]. In case of missing information, reliable QSARs predictions were used for non toxicological endpoints (e.g. BCF for TIBP) or for the uncertainty assessment of QS. In the CARE MED project, only saltwater values are considered and being not intended for the production of drinking water in the study area, this protection objective for humans haven’t been taken into account for QS water derivation.

RESULTS

QS water: Maximum Acceptable Concentration (MAC-QS) and Annual Average concentration (AA-QS) are driven by the protection of pelagic species. In the absence of toxicological data on marine organisms (except for bacteria for TnBP), data on freshwater organisms were used to derive QS in saltwater in accordance with TG EOS recommendation. AA-QS values for TnBP are similar or equivalent to previously derived standards by RIVM [4] and INERIS [5], respectively.

QS biota: are driven by the protection of predators for EHDP and TIBP and by the protection of humans for TIBP. QS biota values are highly variable between the three OPEs with the lowest value for EHDP. The updated methodology for the derivation of QS biota for top predators being not applicable due to the lack of relevant data, the standard approach described in the previous version of the TG EOS [2] was used instead.

QS sediment: were derived based on the Equilibrium Partitioning approach since no toxicity data on sediment organisms where available for none of the three OPEs.

Reliability of QS: All derived QS have a medium reliability except the AA-QS for TIBP and the QS sediment that have all a low reliability.

CONCLUSIONS and PERSPECTIVES

✓ Dissemination activities by the regulatory authorities is a major source of data for the derivation of QS and contribute greatly to improve their reliability.
✓ Main data gaps on toxicity are identified for marine pelagic organisms, birds and benthic organisms for the derivation of QS for saltwater, biota and sediment, respectively.
✓ Bioconcentration and biomagnification data in relevant food chains for secondary poisoning consideration are also missing jeopardizing the use of the methodology described in the updated TG EOS.
✓ In the framework of the CARE MED project, BCF and BMF/TMF values for a representative coastal Mediterranean trophic chain will be estimated allowing the improvement of the established QS.
✓ The comparison of the QS with the environmental concentrations measured in water, fish and sediment will allow to assess if the 3 alkyl-OPEs present a risk for the marine organisms living in the Gulf of Lion (NW Mediterranean Sea) and humans consuming fishery products from this area.
✓ Finally, more QS will be derived for substances used in plastic products, including chlorinated OPEs and phthalates, some having validated or potential endocrine disrupting properties.

Contact
Dr. Genevieve Deviller
DERAC-Environmental Risk Assessment of Chemicals
Website: www.derac.eu
E-mail: genevieve.deviller@derac.eu
Tel: +33 (0)9 51 16 60 79; Mobile: +33 (0)6 23 21 40 08

References

Acknowledgements
The authors would like to acknowledge the financial support provided by the RMC French Water Agency.

Fig. 1 Molecular structure and CAS number of the three studied alkyl-OPEs

Fig. 2 Key steps in setting up QS in the CARE MED project

Fig. 3 Main criteria to assess the reliability of the derived QS

Fig. 4 Quality Standards as marine threshold concentrations for three alkyl-OPEs

Table 1: QS for the three studied alkyl-OPEs

Table 2: QS for the three studied alkyl-OPEs

Table 3: QS for the three studied alkyl-OPEs

Table 4: QS for the three studied alkyl-OPEs

Table 5: QS for the three studied alkyl-OPEs

Table 6: QS for the three studied alkyl-OPEs